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Abstract—Locally most powerful invariant test (LMPIT) for
sphericity of Gaussian vectors has been derived by Ramı́rez et al.
Nevertheless, the decision threshold of the LMPIT is not accurate
and its detection performance has not yet been addressed. In this
paper, the LMPIT is performed for target detection in multiple-
input multiple-output (MIMO) radar, and its theoretical decision
threshold as well as detection probability are accurately deter-
mined. Utilizing asymptotic expansion approach, we calculate the
asymptotic null distribution as a function of central chi-square dis-
tributions, resulting in precise closed-form formula for threshold-
ing. On the other hand, the nonnull distribution is approximated by
weighted sum of noncentral chi-square distributions and Gamma
distribution for close and far hypotheses, respectively. This enables
us to derive a closed-form formula to precisely evaluate the de-
tection power of the LMPIT. Numerical results demonstrate that
our theoretical computations are very accurate in determining the
decision threshold and predicting the behaviors of the LMPIT.
Moreover, the superiority of the LMPIT for MIMO radar target
detection over state-of-the-art methods is demonstrated for spa-
tially colored but temporarily white noise.

Index Terms—Sphericity test, locally most powerful invari-
ant test, asymptotic series expansion, chi-square approximation,
threshold calculation, coherent MIMO radar detection.

I. INTRODUCTION

THE problem of testing for sphericity is to infer whether a
set of random variables is independent and identically dis-

tributed (i.i.d.) or not, or equivalently, to test the null hypothesis
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that the covariance matrix is an identity matrix multiplied by an
unknown scalar. Such an issue is widely seen in a number of
application areas such as signal detection in sonar and radar [2],
[3], source number estimation [4], image processing [5] and
spectrum sensing [6]–[8]. In the real-valued Gaussian case,
Mauchly [9] first derived the generalized likelihood ratio test
(GLRT) for this hypothesis testing problem, which, however,
is suboptimal as signal-to-noise ratio (SNR) becomes small. To
tackle this drawback, John [10] derived the locally most power-
ful invariant test (LMPIT) for sphericity. Later on, Nagao [11]
independently reached the same test statistic as John’s test by
exploiting the asymptotic variance of the GLRT. More recently,
Ramı́rez et al. [1] generalized this problem to the vector case,
where the covariance matrix under the null hypothesis is the
Kronecker product of the identity matrix and an unknown ma-
trix, and derived the LMPIT for this detection problem under
both real- and complex-valued scenarios.

The need of sphericity test for vectors arises from applica-
tions such as coherent multiple-input multiple-output (MIMO)
radar detection. Unlike traditional radar, the coherent MIMO
radar can transmit linearly independent waveforms, which are
known at the receiver, to achieve coherent processing gain. One
challenging issue in MIMO radar target detection is that the
noise covariance structure is usually not available and may be
unspecified. Thus, it is not possible to distinguish signals from
the unknown background noise by their covariance matrices.
To address this problem, an additional reference channel could
be equipped to collect target-free secondary data, which are
used to estimate the noise covariance matrix at the receiver,
thereby improving the robustness of the detector against colored
noise [12]–[16]. However, the overhead increases system com-
plexity and requires the noise in the reference and surveillance
channels to share the same statistical properties; otherwise, the
detection performance might be degraded. As a matter of fact,
in coherent MIMO radar, the receiver can utilize linear indepen-
dence between the waveforms and perform pulse compression
and vectorization to dissimilate the covariance matrices under
the target presence and absence cases. Since the waveforms are
linearly independent, the pulse compression can retain the inde-
pendence between the column vectors of the noise data matrix
while correlate those of the signal part. Thus, after vectoriza-
tion, the noise covariance matrix becomes block-spherical. Such
a noise covariance matrix structure guarantees the identifiability
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of target echoes. However, the state-of-the-art approaches have
not yet utilized this property. The reason is that they have usually
used the Swerling-I model, in which the coherent process inter-
val (CPI) is long and the reflection coefficient is modeled as a
constant. Therefore, the received data are compressed into only
one vector, and second-order statistics are not of interest. When
the CPI is short, the reflection coefficient should be modeled as a
random variable (Swerling-II model [18]), leading to a sequence
of i.i.d. output data vectors. Under these circumstances, it is de-
sirable to exploit the specific structure of the noise covariance
matrix. In particular, the source detection problem can be cast
as detecting whether the covariance matrix of the vectorized
data is block spherical or not [1]. In practical implementations,
there are two well-known criteria to produce CFAR detectors,
i.e., the generalized likelihood ratio (GLR) and locally most
powerful invariant (LMPI). Usually, the implementation of the
GLR criterion is straightforward while that of the LMPI re-
quires one to firstly seek the maximal invariant statistic, then
determine the ratio of its probability densities under the binary
hypotheses, which is quite non-trivial. However, the LMPI cri-
terion always leads to “locally optimal” detectors that perform
particularly well in the low SNR regime. Since the MIMO radar
usually needs to detect very weak target echos, the LMPIT, de-
rived by the LMPI criterion in [1], is a good candidate for this
task.

As a matter of fact, the distributions of the LMPIT have not
yet been analyzed accurately in the literature, which thereby
motivates us to fill this gap. In other words, the aim of this pa-
per is to derive accurate distributions of LMPIT under null and
non-null hypotheses, which enables us to set the decision thresh-
old and assess its detection performance precisely. It should be
noted that [1] gives an approximation to the null distribution
of the LMPIT in the vector case by resorting to the Wilks’
theorem [20]. However, this result contains only the dominant
term and is not able to yield accurate null distribution, partic-
ularly when the sample size becomes small, thus resulting in
a relatively large error in the decision threshold. It is worth
pointing out that in the real-valued scalar case, Nagao [11] de-
rived asymptotic expansion of the null distribution up to order
o(n−2), with n being the sample size. The asymptotic series
expansion provides the higher-order terms which are omitted in
the limiting distribution, thereby being able to further improve
the approximation accuracy. Note that the authors of [8] found
that this null distribution is not as accurate as predicted by the
remnant’s order. Indeed, the inaccuracy is due to calculation er-
rors in [11] rather than the invalidity of the asymptotic expansion
method. This is verified by our calculations in this paper, which
can be taken as a generalization of the result in [11]. Further-
more, the asymptotic expansion determines the null distribution
as a weighted sum of Chi-square distributions, ending up with
a computationally simple and invertible function. As a result,
we are able to determine the closed-form threshold expression
for decision making, significantly reducing the computational
cost. On the other hand, we will derive the accurate non-null
distribution of the LMPIT.

It should be pointed out that under the non-null hypoth-
esis, the asymptotic expansions of the non-null distributions

for high and low SNR regions should be calculated separately,
since the covariance matrices possess different asymptotic struc-
tures under these two conditions [21], [22]. Therefore, the non-
null distribution are approximated separately for the low and
SNR cases. In summary, the main contributions of this work
include:

1) Under the null hypothesis, we derive the distribution of
the LMPIT as a weighted sum of Chi-square distributions
by inverting the asymptotic expansion of the characteristic
function. The accuracy of the derived distribution is up to
order o(n−2).

2) By inverting the null hypothesis, we obtain a closed-form
threshold formula for the LMPIT, which avoids numeri-
cally inverting the null distribution. As a result, the com-
plexity involved in decision threshold computation is very
low.

3) Under the non-null hypothesis, the distribution of the
LMPIT is produced in terms of non-central Chi-square
distribution with remnant’s order o(n− 3

2 ) for the low SNR
case. For the high SNR case, we employ the asymptotic
expansion method to precisely determine the mean and
variance of the LMPIT, resulting in an accurate Gamma
approximation to its non-null distribution. This in turn al-
lows us to accurately predict the detection behavior of the
LMPIT approach.

The remainder of this paper is structured as follows. Section II
presents the hypothesis testing model and LMPIT approach.
Section III derives the asymptotic null distribution of the LMPIT
along with closed-form expression for threshold calculation.
The distribution under the alternative hypotheses is presented
in Section IV. Section V provides simulation results to confirm
the theoretical calculations. Finally, conclusions are drawn in
Section VI.

Throughout this paper, we use boldface uppercase letters
for matrices, boldface lowercase letters for column vectors,
and normal font letters for scalar quantities. The E[a] denotes
the expectation of a and V (a) means the variance of a. The
A ∈ Rp×n (Cp×n ) means that A is a p × n real (complex) ma-
trix and Aij (Ai,j ) stands for the (i, j) block (element) of A.
The 0p×n denotes the p × n zero matrix. The |A| and ||A||F
are the determinant and Frobenius norm of A, respectively. The
tr(A) means the trace of A and Tr(A) signifies the summa-
tion of all diagonal blocks of A. The etr(A) stands for etr(A) .
Superscripts (·)T and (·)H represent transpose and Hermitian
transpose operations. The (·)R and (·)I denote the real and
imaginary parts, respectively. The S ∼ CWp(n,Σ) means that
S follows a complex Wishart distribution with n degrees of free-
dom (DOFs) and associated covariance matrix Σ ∈ Cp×p and
∼ signifies “distributed as”. The A

1
2 (A− 1

2 ) is the Hermitian
square root of the Hermitian matrix A (A−1). A ⊗ B denotes
the Kronecker product of A and B. The o(ni) means a scalar
whose magnitude is comparable to ni and O(ni) stands for a
matrix whose elements are of order ni . Finally, the exponent of
any Hermitian matrix is defined as

eA = I + A +
A2

2!
+

A3

3!
+ · · · + An

n!
+ · · · , (1)
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where the power Ak of a matrix A for a positive integer k is
defined as the matrix product of k copies of A,

Ak = A · · ·A
︸ ︷︷ ︸

k

. (2)

II. PROBLEM FORMULATION

Consider a coherent MIMO radar system where there are q
co-located transmit antennas and m co-located receive anten-
nas. The transmitters simultaneously emit q mutually orthogonal
waveforms U ∈ Cq×k such that UUH = Iq . The transmitted
signals are reflected by a far-field point source located at (θ, ϕ),
with θ and ϕ being the angles of the target with respect to trans-
mit and receive arrays, respectively, which is stationary during
the observation time. The reflection coefficient of the source,
denoted as β, is modeled by a zero-mean complex Gaussian
variable, and is fixed for each pulse duration but changes inde-
pendently from pulse to pulse, i.e., it conforms to the Swerling-II
model [18]. The receiver collects the reflected signal snapshot
by snapshot, and each snapshot corresponds to a pulse duration
(k code symbols). Thus, the received data arrived at the receiver
at the l-th snapshot (l = 1, . . . , n) can be described by

Xl = βar (ϕ)aT
t (θ)U + Vl , (3)

where at(θ) ∈ C1×q and ar (ϕ) ∈ C1×m are the transmit and
receive steering vectors and Vl ∈ Cm×k represents the noise
term, which is a sum of contributions from thermal noise, clut-
ter and jammer. Similar to [23]–[25], we assume it to be zero
mean complex Gaussian, temporally white but spatially corre-
lated with unknown covariance matrix. More specifically, the
columns of Vl are independent complex Gaussian vectors with
zeros mean and unknown covariance matrix R. This thereby
causes the covariance structure of the received signal to be in-
distinguishable between the signal-absent and -present cases.
However, this problem could be solved by performing pulse
compression:

X̄l =
1√
k
XlUH =

√
kβar (ϕ)aT

t (θ) +
1√
k
VlUH . (4)

Vectorizing X̄l gives

yl = vec(X̄l) =
√

kβb(θ, φ) + zl , (5)

where b(θ, φ) = at(θ) ⊗ ar (ϕ) and zl = 1√
k
vec(VlUH ).

Therefore, the covariance matrix of the noise-only case is cal-
culated as

Σ = E[zlzH
l ] =

1
k

E[(U∗ ⊗ Iq )vec(Vl)vec(Vl)H (UT ⊗ Iq )]

=
1
k

(U∗UT ⊗ R)

= Iq ⊗ R. (6)

When the target exists, this block-diagonal structure is
destroyed, leading to Σ =

√
kσ2

βb(θ, φ)bH (θ, φ) + Iq ⊗ R,
where σ2

β = E[|β|2] is the variance of β. As a result, the hy-

pothesis testing problem is summarized as1

H0 : Σ = Iq ⊗ R (7a)

H1 : Σ � Iq ⊗ R, (7b)

where A � B is equivalent to A − B being positive definite.
With a total of n pulses transmitted, namely, n i.i.d. realizations
of y, the LMPIT in [1] can be adopted for the above hypothesis
testing problem, which is

TLMP = ||(Iq ⊗ S0) − 1
2 S(Iq ⊗ S0) − 1

2 ||2F , (8)

where

S =
n
∑

i=1

yiyH
i (9)

and S0 = Tr(S)/q. 2 Note that when m = 1, the LMPIT reduces
to the John’s test. Therefore, the John’s test is the special case
of the LMPIT.

Remark 1: Comparing with the independence test, the
sphericity test further considers the identity of the diagonal
blocks. In other words, it has utilized this additional informa-
tion to enhance detection performance. When it comes to co-
herent MIMO radar detection, the temporary whiteness of the
noise matches with this property, thereby suggesting that the
sphericity test can utilize additional information to outperform
the independence test in this scenario.

Remark 2: It should be noted that when the noise is spatially
white but temporally correlated [16], the noise structure in (6)
is still valid, provided that the receiver vectorizes XT instead of
X. On the other hand, such a noise structure can also be found in
other applications besides MIMO radar detection. For example,
it follows from [19] that the noise structure of the “Two-Loop
Vector” antenna array is I2 ⊗ Φ, with Φ being a positive definite
Hermitian matrix. Therefore, the LMPIT is not restricted to the
coherent MIMO radar detection problem discussed above. On
the other hand, the accuracy of the null distribution of LMPIT
obtained in [1] can be further improved since the higher-order
terms cannot be ignored for small sample situations. Also note
that the non-null distribution of the LMPIT has not yet been
studied in the literature. In the following we derive the accurate
asymptotic null and non-null distributions for the LMPIT utiliz-
ing the asymptotic series expansion of the characteristic func-
tion of the LMPIT statistic. Besides, since [1] indicates that the
LMPIT is in identical form for the real Gaussian observations,
we also present its performance analysis in this case. However,
the detailed derivations are only provided for the complex case
as our current work focuses on target detection for MIMO radar.

III. NULL DISTRIBUTION

In this section, the asymptotic null distribution of T is ob-
tained by performing the asymptotic expansion method. The

1When SNR is low, studying the rank structure of the signal covariance matrix
does not further enhance detection performance [1]. Moreover, the steering
vector may vary for diverse transmit/receive arrays, thus is not specifically
exploited herein.

2Throughout this paper, the dimensions of all blocks are taken as m × m
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closed-form formula for threshold computation is derived as
well.

Before applying the asymptotic expansion technique, the test
statistic needs to be modified into a monotonic form which is
asymptotically Chi-square distributed under the null hypothesis.
As shown in [1], the following form of the LMPIT provides such
a property:

T = ntr
(

(qS(Iq ⊗ Tr(S))−1 − Ip)2
)

. (10)

The null distribution of T is provided in the following theorem:
Theorem 1: The null distribution of T can be approximated

asymptotically up to o(n−2) by

Pr(T � γ) =
3
∑

k=0

hk Pr(χ2
f +2k � γ) + o(n−2), (11)

where

h0 = 1 +
2m3 − m

12qn
− 2p3 − p

12n
(12a)

h1 =
p3

2n
− m2p

2n
(12b)

h2 =
p

4n
− (2m3 + m)

4qn
+

m2p

n
− p3

2n
(12c)

h3 =
m3 + m

3qn
− p

3n
− m2p

2n
+

p3

6n
, (12d)

f = p2 − m2 and χ2
f denotes a Chi-squared distributed random

variable with f DOFs.
Proof: The proof is given in Appendix A. �
It follows from [11, (8.1-8.2)] that for the asymptotic distri-

bution of T given in (11), its theoretical threshold for a given
false-alarm rate Pfa is approximated as

γ(Pfa) = u +
2h3u

f(f + 2)(f + 4)
[

u2 + (f + 4)u

+(f + 2)(f + 4)] +
2h2u

f(f + 2)
(u + f + 2) +

2h1u

f

+ o
(

n−2
)

, (13)

where Pr(χ2
f � u) = 1 − Pfa .

For the real-valued Gaussian case, the test statistic is modified
as

T ′ =
n

2
tr
(

(qS(Iq ⊗ Tr(S))−1 − Ip)2
)

, (14)

whose null distribution is given by the following theorem.
Theorem 2: The null distribution of T ′ can be approximated

asymptotically up to o(n−2) by

Pr(T ′ � γ) =
3
∑

k=0

h′
k Pr(χ2

f ′+2k � γ) + o(n−2), (15)

where f ′ = (p2 + p − m2 − m)/2 and

h′
0 = 1 − 2p3 + 3p2 − p

24n
+

2m3 + 3m2 − m

24qn
(16a)

h′
1 = − (p + 1)(m2 + m − p2 − p)

4n
(16b)

h′
2 =

−2m2p − 5mp + 4p3 + 6p2 − 5p

8q2n
+

4p2 + 6p

8qn

− 2p3 + 5p2 + p

8n
(16c)

h′
3 =

2m2p + 6mp − 3p3 − 6p2 + 8p

12q2n
− 3p2 + 6p

12qn

+
p3 + 3p2 − 2p

12n
. (16d)

On the basis of this result, the LMPIT could be applied in
other fields besides MIMO radar. But the proof is omitted for
its similarity to that of the complex case. �

Remark 3: The result of [11, Th. 5.1] is the special case of
Theorem 2 at m = 1. However, when setting m = 1, our result
does not reduce to that in [11]. As shown by simulations in [27],
our result turns out to be more accurate. This is because there
are errors in the formulas in [11]. That is, the terms 436/(24p),
−216/(4p), 420/(8p) and −200/(12p) in (5.3) of [11] should
be corrected as 1/(6p), 0, −3/(2p), 4/(3p), respectively.

Remark 4: Given all positive integer moments of a detector,
the Box’s approximation [28], [29] expands its null distribu-
tion to a more accurate o(n−3), by performing a comparatively
simpler calculation. Therefore, when analysing the null distri-
butions of GLRTs, the Box’s approximation is preferable since
the exact moments are usually inferrable. On the contrary, for
LMPITs, it is normally impossible to derive all these moments.
Thus the proposed asymptotic expansion method should be
applied.

IV. NON-NULL DISTRIBUTION UNDER CLOSE HYPOTHESES

In this section, we derive the distribution of T under the non-
null hypothesis: Σ =

√
kσ2

βb(θ, φ)bH (θ, φ) + Iq ⊗ R. To fa-
cilitate our computations, we utilize the property that the distri-
bution of T remains invariant when Σ is pre- and post-multiplied
by a block spherical matrix and define

Σ′ = (Iq ⊗ Tr(Σ)/q) −1/2Σ(Iq ⊗ Tr(Σ)/q) −1/2. (17)

When the non-zero elements of (Σ′ − Ip) are of order o(1/
√

n),
the alternative hypothesis is considered to be “close” to the null
hypothesis. Under such circumstances, the distribution of T is
given in the following theorem:

Theorem 3: Under the alternative hypothesis, the distribu-
tion of T can be approximated asymptotically up to o(n− 3

2 )
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by

Pr(T � γ) =
6
∑

k=0

gk Pr(χ2
f +2k (a2) � γ)

+
3
∑

k=0

hk Pr(χ2
f +2k (a2) � γ) + o

(

n− 3
2

)

, (18)

where

g0 =
2a3

3
√

n
+

e2

2qn
+

2a2
3

9n
− 3a4

4n
(19a)

g1 = − a3√
n

+
b2

2qn
− 3e2

2qn
+

3a4

2n
− 2a2

3

3n
(19b)

g2 =
a2

3

2n
+

e2

2qn
+

a2p

2n
(19c)

g3 =
a3

3
√

n
+

b2

2qn
+

e2

qn
+

a2m

qn
− a4

n
− a2p

n
+

2a2
3

9n
(19d)

g4 = − a2
3

3n
− b2

qn
− a2m

qn
− a4

4n
+

pa2

2n
(19e)

g5 =
a4

2n
− e2

2qn
(19f)

g6 =
a2

3

18n
(19g)

with Z � √
n(Σ′ − Ip), ai = tr(Zi), b2 =

∑q
i,j=1 |tr(Zij )|2

and e2 = tr(Tr(Z2)2) and χ2
f (σ2) denoting a noncentral Chi-

squared distribution with f DOFs and noncentrality parameter
σ2.

Proof: The proof is given in Appendix B. �
It is seen that if we set Σ to be the identity matrix, the same

asymptotic series expansion of the null distribution as (11) is
obtained. Following the same procedure, the result for the real-
valued Gaussian case is also derived, which is provided in the
following theorem:

Theorem 4: Under the alternative hypothesis, the distribu-
tion of T can be approximated asymptotically up to o(n− 3

2 )
by

Pr(T � γ) =
6
∑

k=0

g′k Pr(χ2
f ′+2k (a2/2) � γ)

+
3
∑

k=0

h′
k Pr(χ2

f ′+2k (a2/2) � γ) + o
(

n− 3
2

)

,

(20)

where

g′0 =
a3

3
√

n
+

e2

4qn
+

a2
3

18n
− 3a4

8n
(21a)

g′1 = − a3

2
√

n
+

f2

4qn
+

b2

4qn
− 3e2

4qn
+

3a4

4n
− a2

3

6n
(21b)

g′2 =
a2

3

8n
+

e2

4qn
+

(p + 1)a2

4n
(21c)

g′3 =
a3

6
√

n
+

f2

4qn
+

b2

4qn
+

e2

2qn
+

(m + 1)a2

2qn
− a4

2n

− (2p + 3)a2

4n
+

a2
3

18n
(21d)

g′4 =
(p + 2)a2

4n
− a2

3

12n
− f2

2qn
− b2

2qn
− (m + 1)a2

2qn
− a4

8n
(21e)

g′5 =
a4

4n
− e2

4qn
(21f)

g′6 =
a2

3

72n
(21g)

with f2 =
∑q

i,j=1 tr(Z2
ij ).

Analogously to Theorem 2, the proof of Theorem 4 is
omitted. �

V. NON-NULL DISTRIBUTION UNDER FAR HYPOTHESIS

When Σ′ is not that close to the identity matrix, the results
in Section IV become invalid. Therefore, it is necessary to de-
rive a new approximation to the non-null distribution for high
SNR case. Here, we resort to the so-called “moment-matching”
method [7], [8], [30], [31], namely, first evaluating the mean and
variance of T and then matching them with those of a known
distribution with the same support.

The exact formulas for moments are difficult to obtain. How-
ever, we may resort to the “asymptotic expansion method” to
acquire simple but accurate moment expressions. In doing so,
approximate representations of mean and variance of T are es-
tablished and given in the following theorem.

Theorem 5: For large n and small p, the mean and variance
of T can be respectively approximated as: 3

u = E[T ] = ntr(Z′2) + e0(Σ′) + o(n− 1
2 ) (22a)

v = E[(T − u)2] = ne1(Σ′) + o(1), (22b)

where

e0(Σ′) = tr(Σ)2 − 2
q

q
∑

i,j=1

tr(Σij )tr((Σ2 + ZΣ)j i)

+
2
q2

q
∑

i,j,k=1

tr(Σij )tr((ZΣ)kkΣj i)

+
1
q2

q
∑

i,j,k ,l=1

|tr(ΣijΣkl)|2 (23a)

e1(Σ′) = 4tr
(

(ZΣ)2
)− 8

q
tr
(

Tr(ΣZΣ)Tr(ZΣ)
)

+
4
q2

tr
(

Tr
(

ZΣ
)

Tr
(

Σ(Iq ⊗ Tr(ZΣ))Σ
))

(23b)

3Equivalently, the approximation error for the standard deviation is of order

n− 1
2 , which is the same as that of mean value. Thus the o(1) terms can be

omitted for the variance.
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and

Z′ � Σ′ − Ip . (24)

Proof: The proof is given in Appendix C. �
Motivated by the fact that T ∈ (0,+∞), we choose the

Gamma distribution, which has the same support as T , to ap-
proximate its non-null distribution. By matching the mean and
variance of a Gamma random variable to those of T we have
the following theorem.

Theorem 6: For large n and small p, the two-first-moment
Gamma approximation to the non-null distribution of T is

p(T < γ) ≈
∫ γ

− inf

yα−1β−αe−
y
β

Γ(α)
dy, (25)

where

α =
u2

v
, β =

v

u
. (26)

Proof: For a Gamma random variable x with density func-
tion (25), its mean and variance are given by

u = αβ, v = αβ2. (27)

Matching its mean and variance with those of T and solving
(27), (26) is obtained. This completes the proof. �

VI. SIMULATION RESULTS

In this section, we first carry out numerical simulations to
validate our theoretical computations of the false-alarm and
detection probabilities, as well as decision threshold. Then we
illustrate the detection performance of the LMPIT in unknown
colored noise. Each result represents an average of 106 Monte
Carlo trials.

We consider a coherent MIMO radar system with uniform
linear arrays at both transmitter and receiver sides, in which the
inter-antenna spacings are equally taken as half-wavelength. The
transmitted waveforms are orthogonal quadrature phase shift
keyed (QPSK) sequences with length 64. The reflection factor
β is modeled as complex Gaussian variable with zero mean
and variance σ2

β . The spatially correlated noise is a complex
Gaussian vector with a Toeplitz covariance matrix R whose first
row is [σ2

n , σ2
nρ, · · · , σ2

nρp−1], namely, the correlations among
antennas follow an exponential decay model. Recall that under
the alternative hypothesis, the covariance matrix of the output
data, after pulse compression, is Σ =

√
kσ2

βb(θ, φ)bH (θ, φ) +
Iq ⊗ R. The SNR (in dB) is defined as

SNR = 10 log10
tr(Σ) − qtr(R)

qtr(R)
= 10 log10

√
kσ2

β

σ2
n

. (28)

To quantify the approximation error between the theoretical and
simulated cumulative distribution functions (CDFs), we employ
the Cramér-von Mises goodness-of-fit test, which is defined
as [32]:

ε =
1
Q

Q
∑

i=1

∣

∣

∣G(xi) − Ĝ(xi)
∣

∣

∣

2
. (29)

Fig. 1. False-alarm probability versus threshold for different values of
(m, q, n).

Here G(xi) is the distribution determined by simulation, which
is taken as the theoretical value, Ĝ(xi) is its estimate obtained
by our derived approximation and Q = 104.

A. Null Distribution

In Fig. 1, the false-alarm probabilities are plotted as functions
of threshold for (m, q, n) values of (3, 3, 20), (3, 2, 50) and
(4, 2, 100). For the purpose of comparison, we also present the
results obtained by the Wilks’ theorem in [1], that is

T ∼ χ2
f . (30)

It is indicated in Fig. 1 that the proposed approximation sur-
passes previous result by Wilks’ theorem in terms of fitting
their simulated counterparts. In addition, the approximation er-
rors measured by (29) are given as [8.59, 0.116, 0.0592] × 10−5

for Wilks’ approximation and [3.29, 0.362, 0.105] × 10−7 for
proposed approximation. Thus, our derived formula is able to
provide more precise approximations than previous result ob-
tained from Wilks’ theorem.

B. Decision Threshold

Fig. 2 shows the actual Pfa corresponding to the calculated
threshold value versus prescribed Pfa under parameter settings
(m, q, n) = (4, 2, 100). It is seen that our threshold formula can
yield a Pfa that aligns very well with the prescribed value. In
contrast, the Wilks’ approximation has a quite large gap between
the actual and prescribed false-alarm probabilities, which in turn
implies that the second-order terms of the asymptotic series
expansion can provide an important correction for the previous
results in [1], particularly for small sample conditions.

Table I lists the exact and approximate threshold value for
false-alarm rates 0.01 and 0.001. It is seen that our approxima-
tions with the second-order term are able to provide threshold
values which are much closer to the exact ones than Wilks’
result. This also confirms that (13) can provide reasonably ac-
curate thresholds.
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Fig. 2. Analytical threshold selection: prescribed Pfa versus actual Pfa at
m = 4, q = 2 and n = 100.

TABLE I
THRESHOLD APPROXIMATIONS FOR DIFFERENT FALSE-ALARM PROBABILITIES

AT m = 4, q = 2 AND n = 100

Pfa Proposed Wilks Simulation

0.01 72.9568 73.6826 73.0164
0.001 83.0533 84.0371 83.0626

Fig. 3. Detection probability versus threshold for SNR = −11 dB and dif-
ferent values of (m, q, n).

C. Non-Null Distribution

We now study the precision of the derived detection probabil-
ity formulas. Here we first examine the accuracy of (18), which
is derived for the low SNR case. Accordingly, in Fig. 3, we as-
sume there is one source at (θ, φ) = (π/6,−π/4), whose SNR
is −11 dB and (m, q, n) are set to be (3, 2, 200), (2, 3, 400) and
(3, 3, 600). It is seen that the proposed approximations are very
accurate in terms of fitting the simulated ones. More precisely,
the approximate errors equal [0.264, 0.811, 2.00] × 10−7.

In Fig. 4, the SNR is changed to −2 dB, which suggests (25)
should be used here. The error between the approximate and sim-
ulated detection probabilities are [1.05, 0.250, 0.374] × 10−5.

Fig. 4. Detection probability versus threshold for SNR = −2 dB and differ-
ent values of (m, q, n).

These results imply that the derived non-null distribution for-
mulas are able to accurately predict the detection performance
of the LMPIT approach for both high and low SNR cases.

D. Detection Performance

Let us now investigate the detection power and robustness
of the LMPIT in the presence of spatially correlated noise.
For comparison purpose, another blind-noise-statistics detec-
tor, namely, the Wilks’ detector [17], [34] is considered4, which
is defined as

TW =
|R̂|

|R̂ + Σ̂| , (31)

where

R̂ =
1
l
WWH (32)

Σ̂ =
1
n

n
∑

j=1

X̄j X̄H
j (33)

with W ∈ Cp×l being the noise-only secondary data matrix ,
which is independent of X̄. In addition, it is worthwhile to study
the performance of the GLRT and LMPIT for independence [1]
in MIMO radar detection, whose definitions are respectively
given as:

TGLR =
|S|

|Tr(S)|q (34)

TI = ||SS−1
D ||2F , (35)

where SD = diag(S11, · · · ,Sqq ).
In Fig. 5, the detection probabilities are plotted as a function

of pulse number n, where the false alarm rate is fixed at 0.001
and other parameters are set as m = q = 3, SNR = −10 dB and
(θ, φ) = (π/3, π/4). The noise correlation factor ρ is set to be
0 and 0.3 in Fig. 5(a) and (b), respectively. In addition, l = n

4Since [12], [13], [15], [16] adopt the Swerling-I model, it is not able to
compare their performances with the LMPIT.
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Fig. 5. Performance comparison for different number of pulses at m = 3, q =
3 and SNR = − 10 dB. (a) ρ = 0, ρ′ = 0.2. (b) ρ = 0.3, ρ′ = 0.4 exp(0.1ıπ).

noise-only observations are collected for the Wilks’ test. We
consider two cases: 1) the secondary data possess identical noise
covariance matrix as the primary data, and 2) there is a mismatch
between the secondary and primary data, in which the noise cor-
relation factor ρ′ is set as 0.2 in Fig. 5(a) and 0.4 exp(0.1ıπ) in
Fig. 5(b). It is seen that the LMPIT outperforms GLRT, inde-
pendence test and Wilks’ test, and the detection probability of
Wilks’ test decreases when the secondary data do not share the
same noise covariance structure as the primary data.

In Fig. 6, SNR is taken as the independent variable while n and
l are both fixed at 100 with other parameters being unchanged.
Again, the detection probability of LMPIT is higher than that of
the other three detectors. It is also observed that as ρ increases
from 0 to 0.3, the performance of LMPIT does not change obvi-
ously. This indicates that the LMPIT is robust against spatially
colored noise in the coherent MIMO radar detection. On the
other hand, it does not require additional noise-only secondary
data, thereby being free from the mismatch problem. This is
because it exploits the block-spherical structure of noise covari-
ance matrix which is ignored by the Wilks’ detection approach.
Besides, GLRT and the independence test also exhibit robust-
ness against colored noise, but its detection power is inferior to
the LMPIT in coherent MIMO radar since the later is optimal
in the low SNR regime.

Fig. 6. Performance comparison for different SNRs at m = 3, q = 3, n =
100 and l = 100. (a) ρ = 0, ρ′ = 0.2. (b) ρ = 0.3, ρ′ = 0.4 exp(0.1ıπ).

VII. CONCLUSION

In this work, we have derived the asymptotic formulas for the
distributions of the LMPIT for sphericity of Gaussian vectors
in real- and complex-valued situations, ending up with accurate
null and non-null distributions as well as closed-form expres-
sions for the decision threshold. More specifically, by inverting
the asymptotic series expansion of the characteristic function
of the LMPIT statistic, the null distribution is expressed as
function of Chi-squared distributions. Meanwhile, the non-null
distribution is derived in terms of weighted sum of non-central
Chi-squared distributions. The convergence rates areo(n−2) and
o(n− 3

2 ) for the null and non-null hypotheses, respectively. Ex-
tensive numerical results validate the accuracies of the derived
asymptotic distributions and analytical threshold formula.

APPENDIX A
PROOF OF THEOREM 1

Proof: Setting Y =
√

n log(S/n) as in [26], T can be ex-
pressed in terms of Y as:

T = u0(Y) +
1√
n

u1(Y) +
1
n

u2(Y) + o(n− 3
2 ), (36)
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where

u0(Y) = tr(Y2) − 1
q

tr(Tr(Y)2) (37a)

u1(Y) = tr(Y3) +
2
q2

tr(Tr(Y)3) − 3
q

tr(Tr(Y)Tr(Y2))

(37b)

u2(Y) =
7

12
tr(Y4) − 3

q3
tr(Tr(Y)4) − 7

3q
tr(Tr(Y)Tr(Y3))

− 5
4q

tr(Tr(Y2)2) +
1
q2

tr((Y(Iq ⊗ Tr(Y)))2)

+
5
q2

tr(Tr(Y)2Tr(Y2)). (37c)

The proof of (36) is given in Appendix D. Without loss of
generality, we set Σ = Ip , yielding S ∼ CWp(n, Ip). It follows
from [26, eq. (13)] that the asymptotic distribution of Y under
large n is

fY (Y) = c etr

(

−Y2

2

)

×
[

1 − tr(Y3)
6
√

n
− tr2(Y)

12n
+

ptr(Y2)
12n

− tr(Y4)
24n

+
tr2(Y3)

72n
+ o(n− 3

2 )
]

, (38)

where

c =
Np(N − p

2 )π− p ( p −1)
2

∏p
k=1(Γ(n + 1 − k))

× exp(−np). (39)

Using (38) and performing straightforward manipulations, we
write the characteristic function of T as

CT (t) = c

∫

exp
(

−1
2

tr(Y2) + (it)u0(Y)
)

×
[

1 +
1
n

{

ptr(Y2)
12

− tr2(Y)
12

− tr(Y4)
24

+ (it)u2(Y)

+
1
2

(

(it)u1(Y) − 1
6

tr(Y3)
)2
}

+ o(n− 3
2 )

]

dY.

(40)

The key to solving (40) is to express the exponential term in
terms of Gaussian probability density function (PDF), which
can be unfolded as

− 1
2

tr(Y2) + (it)u0(Y)

= −1 − 2it

2

⎛

⎜

⎝

p
∑

j=1

Y2
j,j + 2

p
∑

j,k=1
j<k

(

(YR
j,k )2 + (YI

j,k )2
)

+
2it

(1 − 2it)q

q
∑

r,s

⎡

⎣

m
∑

j=1

(Yrr )j,j (Yss)j,j

+ 2
m
∑

j,k=1
j<k

(

(Yrr )R
j,k (Yss)R

j,k + (Yrr )I
j,k (Yss)I

j,k

)

⎤

⎦

⎞

⎟

⎠ .

(41)

It is observed that the parameters of Y are not separable. There-
fore, we cannot assume them to be independently distributed
Gaussian variables as in [26]. To proceed, we define ỹ1 ∈ R1×p ,
ỹ2 ∈ R1×(mp−p) and ỹ3 ∈ R1×(p2−mp) as

ỹ1 = [(Y11)1,1, · · · , (Yqq )1,1, · · · , (Y11)2,2, · · · , (Yqq )2,2,

· · · , (Y11)m,m , · · · , (Yqq )m,m ]

ỹ2 = [(Y11)R
1,2, · · · , (Yqq )R

1,2, (Y11)R
1,3, · · · , (Yqq )R

1,3, · · · ,

(Y11)R
m−1,m , · · · , (Yqq )R

m−1,m , (Y11)I
1,2, · · · ,

(Yqq )I
1,2, (Y11)I

1,3, · · · , (Yqq )I
1,3, · · · , (Y11)I

m−1,m ,

· · · , (Yqq )I
m−1,m ]

ỹ3 = [(Y12)R
1,2, (Y12)R

1,3, · · · , (Y12)R
m−1,m , · · · , (Y(q−1)q )R

1,2,

(Y(q−1)q )R
1,3, · · · , (Y(q−1)q )R

m−1,m , (Y12)I
1,2, (Y12)I

1,3,

· · · , (Y12)I
m−1,m , · · · , (Y(q−1)q )I

1,2, (Y(q−1)q )I
1,3, · · · ,

(Y(q−1)q )I
m−1,m ] (42)

and set ỹ = [ỹ1, ỹ2, ỹ3]. Therefore, the problem is converted
into searching matrix Γ such that

ỹΓ−1ỹH = (1 − 2it)
(

tr(Y2) +
2it

(1 − 2it)q
tr(Tr(Y)2)

)

.

(43)

Combining (41), (42) and (43), we obtain

Γ =

⎡

⎢

⎣

Im ⊗ Δ 0p×(mp−p) 0p×(p2−mp)

0(mp−p)×p
1
2Im 2−m ⊗ Δ 0(p2−mp)×(mp−p)

0(p2−mp)×p 0(mp−p)×(p2−mp)
φ
2 Ip2−mp

⎤

⎥

⎦ ,

(44)

where

Δ =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

φ + σ σ . . . σ

σ φ + σ . . . σ

...
...

. . .
...

σ σ . . . φ + σ

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(45)

with φ = (1 − 2it)−1 and σ = (1 − φ)/q. To this end, we have
expressed the exponential term in (40) as exp(−ỹΓ−1ỹH ). It is
thereby reasonable to take the integration in (40) as the expec-
tation over ỹ = wΓ

1
2 , where w ∈ R1×p2

has mutually indepen-
dent standard Gaussian entries. Consequently, the characteristic
function can be expressed as:

CT (t) = c1φ
f
2 E

[

1 +
1
n

{

ptr(Y2)
12

− tr2(Y)
12

− tr(Y4)
24

+ (it)u2(Y)

+
(

(it)u1(Y) − 1
6

tr(Y3)
)2
}

+ o(n− 3
2 )

]

. (46)
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Herein, f = p2 − m2 and c1 = c × (2π)
p 2

2 2−
p ( p −1)

2 , which
could be replaced by its Stirlings approximation [26]

c1 = 1 − 2p3 − p

12n
+ o
(

n−2
)

. (47)

Moreover, note that the odd moments of Y in (46) are zero
and thereby can be omitted, while the non-zero expectations
in (46) are listed in Table II of Appendix E.

Combining (46), (47) and Table II, we obtain the asymptotic
expression of the characteristic function:

CT (t) = φ
f
2

[

3
∑

k=0

hkφk + o
(

n−2
)

]

, (48)

where

h0 = 1 +
2m3 − m

12qn
+

−2p3 + p

12n
(49a)

h1 =
p3

2n
− m2p

2n
(49b)

h2 =
p

4n
− (2m3 + m)

4qn
+

m2p

n
− p3

2n
(49c)

h3 =
m3 + m

3qn
− p

3n
− m2p

2n
+

p3

6n
(49d)

with φ = (1 − 2it)−1 as defined after (45). Note that the order
of remaining terms reduces to o(n−2) due to the fact that the
o(n− 3

2 ) terms contain only odd moments of Y which equal zero.
Inverting the characteristic function yields (11). This completes
the proof of Theorem 1. �

APPENDIX B
PROOF OF THEOREM 3

Proof: It is proved in [26] that in the low SNR case, the
asymptotic distribution of Y is determined by

fY (Y)=c etr(v0)
[

1 +
v1(Y)√

n
+

v2(Y)
n

+
v2

1(Y)
2n

+ o
(

n− 3
2

)
]

,

(50)

where

v0(Y) = −Y2

2
+ YZ − Z2

2
(51a)

v1(Y) = −Y3

6
− Z2Y +

ZY2

2
+

2tr(Z3)
3

(51b)

v2(Y) =
ptr(Y2)

12
− tr2(Y)

12
− Y4

24
− Y2Z2

2
+

Y3Z
6

+ YZ3

− 3tr(Z4)
4

(51c)

with

Z �
√

n(Σ′ − Ip). (52)

Similar to our arguments in Section III, CT (T ) is calculated
as:

CT (t) = c

∫

exp (v0(Y) + (it)u0(Y)) ×
[

1 +
1√
n

(

v1(Y)

+ (it)u1(Y)
)

+
1
n

{

v2(Y) + (it)u2(Y)

+
1
2

(v1(Y) + (it)u1(Y))2
}

+ o
(

n− 3
2

)
]

dY,

(53)

where the exponential term is

exp (v0(Y) + (it)u0(Y))

= etr
(

(it)Z2φ
)

× exp
(

− 1
2φ

[

tr (Y − φZ)2 + (2it)φtr(Tr(Y)2)
]
)

.

(54)

Since Tr(Z) = 0m×m , we have Tr(Y) = Tr(Y − Z). There-
fore, the p2 variables of Y can be considered as Gaussian dis-
tributed with mean E{Yj,k} = φZj,k and covariance matrix
provided in (44). Consequently, CT (T ) is expressed as:

CT (t) = c1E

[{

1 +
1√
n

(

v1(Y) + (it)u1(Y)
)

+
1
n

{

v2(Y) + (it)u2(Y)+
1
2

(v1(Y)+(it)u1(Y))2
}

+o
(

n− 3
2

)
}]

. (55)

Furthermore, the moments involved in (55) are listed in Ta-
ble III of Appendix E. Substituting these moments into (55)
yields the following asymptotic result for the characteristic
function:

CT (t) = φ
f
2 exp

(

(it)a2φ
)

[

3
∑

k=0

hkφk +
6
∑

k=0

gkφk + o
(

n− 3
2

)

]

,

(56)

where

g0 =
2a3

3
√

n
+

e2

2qn
+

2a2
3

9n
− 3a4

4n
(57a)

g1 = − a3√
n

+
b2

2qn
− 3e2

2qn
+

3a4

2n
− 2a2

3

3n
(57b)

g2 =
a2

3

2n
+

e2

2qn
+

a2p

2n
(57c)

g3 =
a3

3
√

n
+

b2

2qn
+

e2

qn
+

a2m

qn
− a4

n
− a2p

n
+

2a2
3

9n
(57d)

g4 = − a2
3

3n
− b2

qn
− a2m

qn
− a4

4n
+

pa2

2n
(57e)

g5 =
a4

2n
− e2

2qn
(57f)

g6 =
a2

3

18n
(57g)
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with ai = tr(Zi), b2 =
∑q

i,j=1 |tr(Zij )|2 and e2 = tr(Tr(Z2)2).
Inverting this characteristic function, we obtain (18). This ends
the proof of Theorem 3. �

APPENDIX C
PROOF OF THEOREM 5

For the high SNR case, we define:

X � S − nΣ√
n

. (58)

Using (58), the asymptotic expansion of T under this setting is:

T = ntr
(

Z′2)+
√

nq0(X) + q1(X) + o(n− 1
2 ) (59)

where

q0(X) = tr
(

2Z′(X − ΣIq ⊗ Tr(X)/q
))

(60a)

q1(X) = tr
(

2Z′(ΣIq ⊗ Tr(X)2/q2 − XIq ⊗ Tr(X)/q
)

+
(

X − ΣIq ⊗ Tr(X)/q
)2)

. (60b)

Clearly, the mean and variance of T can be respectively approx-
imated as:

u = ntr(Z′2) +
√

nE[q0(X)] + E[q1(X)] + o(n− 1
2 ) (61a)

v = nE[q2
0(X)] + 2

√
nE[q0(X)q1(X)] + o(1). (61b)

Expressing q0(X) and q1(X) in terms of S, we have

q0(X) =
1

q
√

n
tr
(

2Z′(qS − ΣIq ⊗ Tr(S)
))

(62a)

q1(X) =
1

q2n
tr
((

S − ΣIq ⊗ Tr(S)
)2 + ΣIq

⊗ (Tr(S) − nqIm )2

− q(S − nΣ)Iq ⊗ (Tr(S) − nqIm )
)

. (62b)

Since Tr(Σ) = qIm , it is straightforward to obtain

E [q0(X)] =
1√
n

tr
(

2Z′(Σ − ΣIq ⊗ Im )
)

= 0. (63)

Moreover, using [33]

E [Sr,sSk,l ] = (n2Σr,sΣk,l + nΣk,sΣr,l), (64)

we have

E [q1(X)]

= tr(Σ)2 − 2
q

q
∑

i,j=1

tr(Σij )tr((Σ2)j i)

+
1
q2

q
∑

i,j,k ,l=1

|tr(ΣijΣkl)|2

+
2
q2

q
∑

i,j,k=1

tr(Σij )tr((ZΣ)kkΣj i)

− 2
q

q
∑

i,j=1

tr((ZΣ)ij )tr(Σj i) (65)

and

E
[

q2
0(X)

]

= 4tr
(

(ZΣ)2
)− 8

q
tr
(

Tr(ΣZΣ)Tr(ZΣ)
)

+
4
q2

tr
(

Tr(ZΣ)Tr(Σ(Iq ⊗ Tr(ZΣ))Σ)
)

. (66)

On the other hand, using the central limit theorem, we conclude
that W = Σ− 1

2 XΣ− 1
2 has an approximate probability distribu-

tion function as

f(W) = c3 × exp
(

−1
2

tr(W2)
)

+ o
(

n− 1
2

)

, (67)

which signifies that each element of W asymptotically obeys
zero mean Gaussian distribution, suggesting that the dominant
term of the third moments of X embedded in (61) equal zero,
namely,

E[q0(X)q1(X)] = 0 + o
(

n− 1
2

)

. (68)

Substituting (63), (65)-(66) and (68) into (61) results in (22).
This ends the proof of Theorem 5.

APPENDIX D
PROOF OF (36)

Proof: Recalling that Y is defined as Y =
√

n log(S/n), it
is easy to obtain

1
n
S = Ip +

Y√
n

+
Y2

2n
+

Y3

6
√

n
3 +

Y4

24n2
+ O

(

n− 5
2

)

. (69)

To expand (Iq ⊗ Tr(S))−1, the following lemma regarding ma-
trix inverse is needed [35, pp. 55].

Lemma 1: Let A ∈ Cp×p and limk→∞ Ak = 0p×p . Then
Ip − A is nonsingular and

(Ip − A)−1 =
∞
∑

k=0

Ak . (70)

By setting

A = −Iq

q
⊗ Tr

[

Y√
n

+
Y2

2n
+

Y3

6
√

n
3 +

Y4

24n2

]

(71)

and applying Lemma 1, we can express (Iq ⊗ Tr(S))−1 as

(

(Iq ⊗ Tr(S))
qn

)−1

= Ip − 1√
n
Iq ⊗ Tr(Y)

q
+

1
n
Iq ⊗

[

Tr2(Y)
q2

− Tr(Y2)
2q

]

+
1√
n

3 Iq ⊗
[

Tr(Y)Tr(Y2)
q2

+
Tr(Y2)Tr(Y)

q2
− Tr(Y3)

6q
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TABLE II
MOMENTS INVOLVED IN (46)

Expectation

tr2(Y) p
tr(Y2) (p2 − m2)φ + m2

tr(Tr(Y)4) mq2(2m2 + 1)
tr(Tr2(Y)Tr(Y2)) (p3 − pm2)φ + p(2m2 + 1)
tr(Tr2(Y2)) (m3q4 − m3q2 + mq2 − m)φ2 − (2m3 − 2m3q2)φ + 2m3 + m
tr(Tr(Y)Tr(Y3)) m(q2 − 1)(2m2 + 1)φ + m(2m2 + 1)
tr((Y ⊗ (Iq , Tr(Y)))2) p(q2 − 1)φ + p(2m2 + 1)
tr(Tr(Y)Tr(Y2))2 (p3q2 − p3 + pq2 − p)φ2 − p(6m2 − 6m2q2)φ + p(12m2 + 3)
tr2(Tr3(Y)) 12p3 + 3pq2

tr(Y3)2 (−6p − 9m3q + 3p3 + 6m 3+ 6m
q )φ3 + (9p − 9m2p + 9p3 − 9m

q )φ2 + (18m2p − 18m 3

q )φ + 12m 3+ 3m
q

tr(Tr(Y)Tr(Y2))tr(Tr3(Y)) (3p3q − mp2)φ + 12mp2 + 3pq
tr(Tr(Y)Tr(Y2))tr(Y3) (3p3q − 3mp2 + 3pq − 3m)φ2 − (12m3 − 12mp2)φ + 3m(4m2 + 1)
tr(Tr3(Y))tr(Y3) (9p3 − 9pm2)φ + 3p(4m2 + 1)

+
Tr3(Y)

q3

]

+
1
n2

Iq ⊗
[

Tr2(Y2)
q2

− Tr(Y4)
6q

− Tr4(Y)
q4

+
2Tr(Y)Tr(Y3)

3q2
+

2Tr(Y3)Tr(Y)
3q2

− 2Tr2(Y)Tr(Y2)
q3

−2Tr(Y)Tr(Y2)Tr(Y)
q3

− 2Tr(Y2)Tr2(Y)
q3

]

+ O
(

n− 5
2

)

.

(72)

Substituting (69) and (72) into (10) leads to the asymptotic series
expansion of T :

T = tr(Y2)− 1
q

tr(Tr(Y)2)+
1√
n

[

tr(Tr(Y3)) +
2
q2

tr(Tr(Y)3)

−3
q

tr(Tr(Y)Tr(Y2))
]

+
1
n

[

7
12

tr(Y4) − 3
q3

tr(Tr(Y)4)

− 7
3q

tr(Tr(Y)Tr(Y3)) +
1
q2

tr((Y(Iq ⊗ Tr(Y)))2)

+
5
q2

tr(Tr(Y)2Tr(Y2)) − 5
4q

tr(Tr(Y2)2)
]

+ o
(

n− 3
2

)

.

(73)

�

APPENDIX E
DERIVATION OF MOMENTS IN (46) AND (55)

In order to simplify the moment computations, we need to
resort to the following results.

Lemma 2: Let A be a p × p Hermitian random matrix whose
p2 free parameters are mutually independent zero mean Gaus-
sian variables with variances:

V (Aj,j ) = 1 j = 1, · · · , p (74a)

V (AR
j,k ) = 1

2 j, k = 1, · · · , p, j < k (74b)

V (AI
j,k ) = 1

2 j, k = 1, · · · , p, j < k. (74c)

Using the subscript pairs (i, j) = a, (k, 1) = b, (m,n) = c,
(q, r) = d, (s, t) = e and (u, v) = f , we have:

E[AaAbAcAd ] = δ(a, b)δ(c, d)

+ δ(a, c)δ(b, d) + δ(a, d)δ(b, c) (75a)

E[AaAbAcAdAeAf ] =

δ(a; b)[δ(c; d)δ(e; f) + δ(c; e)δ(d; f) + δ(c; f)δ(d; e)]

+ δ(a; c)[δ(b; d)δ(e; f) + δ(b; e)δ(d; f) + δ(b; f)δ(d; e)]

+ δ(a; d)[δ(b; c)δ(e; f) + δ(b; e)δ(c; f) + δ(b; f)δ(c; e)]

+ δ(a; e)[δ(b; c)δ(d; f) + δ(b; d)δ(c; f) + δ(b; f)δ(c; d)]

+ δ(a; f)[δ(b; c)δ(d; e) + δ(b; d)δ(c; e) + δ(b; e)δ(c; d)],

(75b)

where δ(i, j; k, l) equals 1 if i = l, k = j, and 0 otherwise.
The proof of Lemma 2 is provided as follows. Based on (74),

we have

E[Ai,jAk,l ] = δ(i, j; k, l) (76a)

E[A2
i,jA

2
j,i ] =

{

2 i �= j

3 i = j
(76b)

E[A3
i,jA

3
j,i ] =

{

6 i �= j
15 i = j

. (76c)

Recall that the odd moments of A equal zero, which, when
combined with (76) leads to (75). This completes the proof of
Lemma 2.

However, Lemma 2 cannot be directly applied to (46) since
some elements of Y are correlated. Therefore, we need to
define two independent Hermitian matrices X ∈ Rp×p and
W ∈ Rm×m , which are in form of A in Lemma 2. Conse-
quently, Y can be expressed as

Y = φ
1
2 X + σ

1
2 Iq ⊗ W. (77)
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TABLE III
MOMENTS INVOLVED IN (46)

Expectation

tr2(Y) p
tr(Y2) (p2 − m2)φ + m2

tr(Tr(Y)4) mq2(2m2 + 1)
tr(Y2Z2) a4φ

4 + (a2mq − a 2m
q )φ3 + a 2m

q φ2

tr(Y3Z) a4φ
4 + (2a2mq − b2+ 2a 2m

q )φ3 + b2+ 2a 2m
q φ2

tr(Tr2(Y)Tr(Y2)) a2pφ2 + (p3 − pm2)φ + p(2m2 + 1)
tr(Tr2(Y2)) (2a2mq2 + 2b2)φ3 + (e2 + 2a2m)φ2 + (m3q4 − m3q2 + mq2 − m)φ2 − (2m3 − 2m3q2)φ + 2m3 + m
tr(Tr(Y)Tr(Y3)) (b2 + 2a2m)φ2 + m(q2 − 1)(2m2 + 1)φ + m(2m2 + 1)
tr((Y ⊗ (Iq , Tr(Y)))2) b2qφ2 + p(q2 − 1)φ + p(2m2 + 1)
tr(Tr(Y)Tr(Y2))2 q(2a2mq2 + 2b2)φ3 + q(g2 + 6a2m)φ2 + (p3q2 − p3 + pq2 − p)φ2 − p(6m2 − 6m2q2)φ + p(12m2 + 3)
tr2(Tr3(Y)) 12p3 + 3pq2

tr(Y3)2 a2
3φ

6 + 9a4φ
5 + (9a2p − 18b2+ 18a 2m

q )φ4 + ( 18b2−9e2
q + 18a2p)φ3 + 9e2+ 18a 2m

q φ2

+(−6p − 9m3q + 3p3 + 6m 3+ 6m
q )φ3 + (9p − 9m2p + 9p3 − 9m

q )φ2 + (18m2p − 18m 3

q )φ + 12m 3+ 3m
q

tr(Tr(Y)Tr(Y2))tr(Tr3(Y)) (3a2pq)φ2 + (3p3q − mp2)φ + 12mp2 + 3pq
tr(Tr(Y)Tr(Y2))tr(Y3) (6a2mq2 + 6b2)φ3 + 12a2mφ2 + 3e2 + (3p3q − 3mp2 + 3pq − 3m)φ2 − (12m3 − 12mp2)φ + 3m(4m2 + 1)
tr(Tr3(Y))tr(Y3) (9a2p)φ2 + (9p3 − 9pm2)φ + 3p(4m2 + 1)
tr(YZ2)2 a2

3φ
6 + a4φ

5 − e2φ 3

q + e2φ 2

q

tr(Y2Z)2 a2
3φ

6 + 4a4φ
5 + (a2p − 2b2

q − 2a 2m
q )φ4 + ( 2b2

q − 4e2
q + 2a 2m

q )φ3 + 4e2
q φ2

tr(Y2Z)tr(YZ2) a2
3φ

6 + 2a4φ
5 − 2e2φ 3

q + 2e2φ 2

q

tr(YZ2)tr(Y3) a2
3φ

6 + 3a4φ
5 + (3a2mq − 3e2+ 3a 2m

q )φ3 + 3e2+ 3a 2m
q φ2

tr(YZ2)tr(Y3) a2
3φ

6 + 6a4φ
5 + (3a2p − 6b2+ 6a 2m

q )φ4 + ( 6b2−6e2
q + 6a2p)φ3 + 6e2+ 6a 2m

q φ2

tr(YZ2)tr(Tr(Y)Tr(Y2)) (a2mq2 − a2m)φ3 + (e2 + 3a2m)φ2

tr(Y2Z)tr(Tr(Y)Tr(Y2)) (2a2mq2 + 2b2)φ3 + (2e2 + 6a2m)φ2

tr(YZ2)tr(Tr3(Y)) (3a2p)φ2

tr(Y2Z)tr(Tr3(Y)) (6a2p)φ2

As a result, we have

E[tr(Y4)] = φ2E[tr(X4)] + 4φσE[tr(X2(I ⊗ W)2)]

+ 2φσE[tr((X(I ⊗ W))2)] + qσ2E[tr(W4)].
(78)

Moreover, applying Lemma 2, the expectations on the right hand
side (r.h.s.) are calculated as

E[tr(X4)] = E

⎡

⎣

p
∑

i,j,k ,l=1

Yi,jYj,kYk,lYl,i

⎤

⎦ = 2p3 + p

(79a)

E[tr(X2(Iq ⊗ W)2)]

=
q
∑

r,s=1

E

⎡

⎣

m
∑

i,j,k ,l=1

(Xrs)i,j (Xsr )j,kWk,lWl,i

⎤

⎦

= q2m3 (79b)

E[tr((X(Iq ⊗ W))2)]

=
q
∑

r,s=1

E

⎡

⎣

m
∑

i,j,k ,l=1

(Xrs)i,jWj,k (Xsr )k,lWl,i

⎤

⎦

= q2m (79c)

E[tr(W4)] = E

⎡

⎣

p
∑

i,j,k ,l=1

Wi,jWj,kWk,lWl,i

⎤

⎦ = 2m3 + m.

(79d)

Noticing that σ = (1 − φ)/q, we eventually have

E[tr(Y4)] =
(

2p3 − 4m3q − mq +
2m3 + m

q

)

φ2

+
(

4m3q + 2p − 4m3 + 2m

q

)

φ +
2m3 + m

q
.

(80)

Similarly, the other moments in (46) can also be determined
accordingly, which are tabulated in Table II.

In (55), the expectation of Y is changed to φZ, which enables
us to modify (77) as

Y = φZ + φ
1
2 X + σ

1
2 Iq ⊗ W. (81)

Here we take tr(Y4) as an example, with the remaining terms
listed in Table III. Based on (81), we have

E[tr(Y4)] = E[tr((φ
1
2 X + σ

1
2 I ⊗ W)4)] + 4φ3E[tr(X2Z2)]

+ 2φ3E[tr((XZ)2)] + 2φ2σE[tr(((I ⊗ W)Z)2)]

+ 4φ2σE[tr((I ⊗ W)2Z2)] + φ4tr(Z4). (82)
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Using Lemma 2, the expectations in the r.h.s. of (82) are calcu-
lated as

E[tr(X2Z2)] =
q
∑

r,s=1

E

⎡

⎣

m
∑

i,j,k ,l=1

Xi,jXj,kZk,lZl,i

⎤

⎦

= pφa2 (83a)

E[tr((XZ)2)] =
q
∑

r,s=1

E

⎡

⎣

m
∑

i,j,k ,l=1

Xi,jZj,kXk,lZl,i

⎤

⎦

= tr2(Z) = 0 (83b)

E[tr((Iq ⊗ W)2Z2)] =
q
∑

r,s=1

E [Wi,jWj,k (ZrsZsr )k,i ]

= ma2 (83c)

E[tr(((Iq ⊗ W)Z)2)] =
q
∑

r,s=1

E [Wi,j (Zrs)j,kWk,l(Zsr )l,i ]

= b2. (83d)

Substituting (83) and (80) into (82) yields

E[tr(Y4)] = (2p3 − 4m3q − mq +
2m3 + m

q
)φ2

+
(

4m3q + 2p − 4m3 + 2m

q

)

φ +
2m3 + m

q

+ a4φ
4 +
(

4a2mq − 2b2 + 4a2m

q

)

φ3

+
2b2 + 4a2m

q
φ2. (84)
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